Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Fan Sun,* Fushi Zhang, Ruji
 Wang, Fuqun Zhao and Shouzhi Pu

Chemistry Department, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
sunfan00@mails.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.061$
$w R$ factor $=0.119$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3,3,4,4,5,5-Hexafluoro-1,2-bis(3-methyl-benzo[b]-2-thienyl)cyclopentene

The title compound, $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~S}_{2}$, was crystallized from a PMMA/chloroform solution (PMMA = polymethylmethacrylate), and its crystal structure was determined. The molecule adopts a photoactive antiparallel conformation. The distance between the two reactive C atoms was determined to be 3.560 (7) \AA. The molecule has crystallographic twofold rotation symmetry.

Comment

As a result of their good thermal stability and high fatigue resistance, photochromic diarylethenes have potential application for opto-electronic devices, such as optical memories and switches (Irie, 2000; Fernandez-Asebes \& Lehn, 1999). Diarylethenes usually have one of two conformations in the solid state, parallel or antiparallel (Kobatake et al., 1999; Shibata et al., 2002).

(I)

The title compound (BTPF), (I), is a bis(2-thienyl)perfluorocyclopentene derivative. It has attracted our attention due to its interesting non-linear optical properties (Sun et al., 2002). Unlike most diarylethenes recrystallized from organic solution (Pu et al., 2003), the crystals of BTPF were obtained from a PMMA/chloroform solution. The polymer in chloroform causes deposition of BTPF/PMMA films, which act as a membranous substrate that mediates the growth of BTPF crystals. As a result, well-formed yellow block-shaped single crystals were obtained.

The X-ray crystallographic study showed that BTPF is packed in the antiparallel conformation. The general view of a molecule, together with the atom-numbering scheme, is shown in Fig. 1. The distance between the reactive C atoms (C 5 and $\mathrm{C} 5^{\mathrm{i}}$; symmetry code $\left.(\mathrm{i})=-x, y, \frac{1}{2}-z\right)$ is $3.560(7) \AA$, which is close enough for a photocyclization reaction (Ramamurthy \& Venkatesan, 1987). The molecule has crystallographic twofold rotation symmetry, the axis passing through C3 and the opposite $\mathrm{C}=\mathrm{C}$ ring of the cyclopentene ring.

Received 27 May 2003
Accepted 12 June 2003
Online 24 June 2003

Figure 1
View of the molecule of BTPF, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.

Experimental

The title compound was prepared according to a method described in the literature (Sun et al., 2002). Single crystals were obtained from a PMMA/chloroform solution. The weight ratio of PMMA and BTPF was 5:1.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~S}_{2}$
$M_{r}=468.46$
Monoclinic, $C 2 / c$
$a=18.8350$ (18) £
$b=9.3507(9) \AA$
$c=11.643$ (2) \AA
$\beta=94.653(11)^{\circ}$ 。
$V=2043.8(5) \AA^{3}$
$Z=4$

Data collection

Bruker P4 diffractometer
ω scans
Absorption correction: none 2244 measured reflections 1644 independent reflections 1198 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.119$
$S=1.00$
1644 reflections
142 parameters
H -atom parameters constrained
$D_{x}=1.522 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 36 reflections
$\theta=3.8-12.6^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.6 \times 0.6 \times 0.2 \mathrm{~mm}$
$\theta_{\max }=25.0^{\circ}$
$h=-1 \rightarrow 22$
$k=-1 \rightarrow 11$
$l=-13 \rightarrow 13$
3 standard reflections
\quad every 100 reflections
\quad intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.001 P)^{2}\right. \\
& +7 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.44 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.00043 \text { (17) }
\end{aligned}
$$

Figure 2

A packing view along the b axis.

H atoms were positioned theoretically and refined using a riding model.

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work is supported by the Fundamental Research of Tsinghua University and the Projects of Development of the State Key Fundamental Research (No. G199903305).

References

Bruker (1997). XSCANS (Version 2.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Fernandez-Asebes, A. \& Lehn, J. M. (1999). Chem. Eur. J. 5, 3285-3292.
Irie, M. (2000). Chem. Rev. 100, 1685-1716.
Kobatake, S., Yamada, M., Yamada, T. \& Irie, M. (1999). J. Am. Chem. Soc. 121, 8450-8456.
Pu, S., Zhang, F., Sun, F., Wang, R., Zhou, X. \& Cheng, X. (2003). Tetrahedron Lett. 44, 1011-1014.
Ramamurthy, V. \& Venkatesan, K. (1987). Chem. Rev. 87, 433-481.
Shibata, K., Muto, K., Kobatake, S. \& Irie, M. (2002). J. Phys. Chem. A, 106, 209-214.
Sun, F., Zhang, F., Lin, X., Guo, H., Pu, S. \& Ma, H. (2002). SPIE J. 4930, 439442.

